

Cuscinetti lineari di precisione

Rosa Sistemi S.p.A. 20025 Legnano (MI) Italy Via S. Quasimodo, 22/24 Tel. ++39 0331 469999 - Fax ++39 0331 469996 http://www.rosa-sistemi.it

E-mail: sales@rosa-sistemi.it

Rosa Sistemi S.p.A., ha attuato un serio programma di costruzione di guide a rulli e tavole normalizzate su rulli, ottenendo in breve tempo dei risultati notevoli dal punto di vista qualitativo. L'idea della realizzazione dei cuscinetti lineari è nata dalla profonda conoscenza dei problemi di rettifica delle superfici piane e dagli innumerevoli problemi costruttivi che si presentano dovendo realizzare delle guide a coda di rondine.

L'utilizzo di guide normalizzate a rulli ha semplificato notevolmente queste applicazioni riducendo i costi di lavorazione e garantendo l'intercambiabilità delle guide stesse, reperibili in qualunque momento.

Da un punto di vista delle prestazioni esiste lo stesso divario che si riscontra tra un cuscinetto a sfere e una bronzina e cioè, a favore del primo, una estrema dolcezza del movimento, la quasi assenza dell'attrito di primo distacco, la possibilità di un preciso riposizionamento continuo.

Queste caratteristiche determinano una usura minima e quindi riducono i possibili interventi della ripresa dei giochi.

Da non sottovalutare il problema, oggi più che mai sentito, della carenza di manodopera specializzata che induce le aziende ad impiegare il più possibile prodotti reperibili in commercio. È certo che le guide a rulli e a rullini non possono risolvere tutti i tipi di scorrimento lineare anche in considerazione di possibili sollecitazioni dinamiche (quali urti ecc.) ma sicuramente possono risolvere la stragrande maggioranza di essi.

La Rosa Sistemi S.p.A. è sicura di offrire ad una clientela esigente un prodotto tecnologicamente validissimo ad un costo molto competitivo; ne danno conferma numerosi clienti, fra cui si annoverano aziende di fama internazionale.

La serietà dell'azienda e dei suoi collaboratori è un binomio che garantisce una efficiente assistenza tecnica in fase di progettazione e rapidità nelle consegne.

Per la realizzazione di dette guide si sono eseguiti criteri tecnologicamente all'avanguardia onde conferire loro la garanzia di un mantenimento costante nel tempo della precisione e della durata.

Utilizzatori dei nostri prodotti divisi per settori

• Macchine utensili in generale. Ed in particolare:

- Rettificatrici senza centri
- Rettificatrici per interni
- Rettificatrici per esterni
- Rettificatrici per cuscinetti
- Foratrici
- Fresatrici
- Pantografi
- Affilatrici per utensili

• Macchine varie:

- Macchine per deformazione materiali
- Elettroerosioni
- Saldatrici speciali
- Macchine per montaggi
- Manipolatori
- Robot
- Industria ottica, meccanica fine, elettronica
- Strumentazione scientifica
- Macchine fotografiche e cinematografice industriali
- Metrologia ed applicazioni su calibri speciali, presetting e robot di controllo

Macchine per:

- costruzione calzature
- costruzione occhialeria e componenti
- bisellatura delle lenti
- serigrafia
- microforature
- lavorazione dell'oro
- lavorazione delle pietre preziose
- orologeriabigiotteria
- lavorazione della gomma e lavorazione pneumatici
- lavorazione del marmo e del vetro
- lavorazione del legno
- industrie tessili
- ultrasuoni

• Industrie costruttrici di macchine elettromedicali

- macchine per radiologia (TAC)
- ortopantomografi
- elettroforesi del sangue
- controllo della vista

Particolari applicazioni sono effettuate da Università (Politecnici), Centri di ricerca, laboratori chimici e di analisi ecc.

Possiamo confermare che l'applicazione dei ns. prodotti è effettuata in tutti i rami artigianali ed industriali dove è richiesta in modo specifico la precisione e la sensibilità di qualsiasi parte in movimento.

Indice

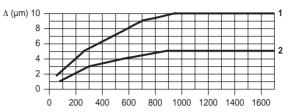
Caratteristiche tecniche generali e calcolo della durata	pag. 6-7-8
Condizioni ideali per il montaggio delle guide	pag. 9-10-11
Applicazione di guide di diversa lunghezza	pag. 12
Esempi di collaudo	pag. 13-14
Esempi di calcolo e verifica dei carichi	pag. 15-16
Guide a rulli «GR»	pag. 17
Guide a rulli «NG»	pag. 23
Guide «M/V» con riporto di materiali antifrizione	pag. 25
Guide a rulli «RM» e «RV»	pag. 27
Guide con riporto di materiale antifrizione «RVA»	pag. 31
Guide «GRD» a doppio prisma	pag. 33
Pattini a sfere tipo «RK» e «RKD»	pag. 37
Guide speciali	pag. 39
Tavole tipo «TR»	pag. 41
Tabelle di collaudo	pag. 48
Tavole tipo «TRL»	pag. 49
Tabelle di collaudo	pag. 56
Tavole tipo «TRKD»	pag. 57

Caratteristiche tecniche

Le guide sono realizzate con acciai speciali per utensili e temperature a cuore con una durezza pari a 60 ± 2 HRC.

Le precisioni ottenibili per quanto riguarda la divergenza del parallelismo tra la pista di rotolamento ed il piano di riscontro sono diversificate a seconda della qualità e cioè: 10 micron su 1600 mm per la qualità normale, 5 micron su 1600 mm per la qualità scelta.

Si precisa inoltre che detti elementi vengono controllati singolarmente durante tutte le fasi di lavorazione sino al collaudo finale. Viene inoltre eseguita una prova di controllo antidistruttiva per accertare che durante il trattamento termico non abbiano subito internamente delle incrinature che potrebbero alterare sia la precisione quanto la durata.


I vantaggi derivati dall'impiego di guide su rulli si possono riassumere in 6 punti:

- Movimenti molto sensibili (coefficiente d'attrito 0,003)
- Assenza dell'attrito di primo distacco (effetto Stik-Slip)
- Usura minima
- · Capacità di carico elevata
- Massima precisione
- Disponibilità a magazzino di tutti i tipi a catalogo.

Esiste già nel programma di produzione una gamma completa di tavole normalizzate su rulli da 25 mm fino a 1010 mm di lunghezza con larghezze variabili da 30 a 145 mm e capacità di carico dinamico da 250 N fino a 48100 N.

La struttura delle tavole può essere realizzata in ghisa G25 invecchiata oppure in acciaio. È disponibile inoltre una gamma di tavole aventi strutture in alluminio anticorodal che per l'esiguità della loro massa consentono di ridurre le forze inerziali.

Caratteristiche tecniche

Tolleranze di fabbricazione e di lavorazione delle superfici

- 1. Qualità normale
- 2. Qualità scelta

Le guide Rosa temprate a cuore con una durezza in HRC 60 ± 2 sono realizzate con acciai speciali per utensili da taglio secondo DIN 1.2842.

Ogni singola guida viene seguita accuratamente durante tutte le fasi di lavorazione ed infine è soggetta ad un ulteriore controllo per quanto riguarda: geometria, durezza, rugosità della pista di rotolamento e delle altre superfici.

Durezza

La durezza ha una grande importanza in quanto è uno dei fattori che determinano la durata delle guide.

È importante sapere che ad una durezza di 58 HRC corrisponde un fattore di durezza Fd = 1, quindi la guida sarà nella migliore condizione di lavoro.

A durezze inferiori ai 58 HRC corrispondono dei fattori di durezza che moltiplicati per la capacità di carico normale (cioè con durezza pista HRC = 58) la riducono proporzionalmente. Se ne deduce che una guida con durezza HRC = 55 e capacità di carico ipotetica di 3000 N avrà una P reale = 3000 · Fd = 3000 x 0,78 = 2340 N.

Temperatura

Anche la temperatura ha una notevole influenza sulla durata delle guide.

Per temperature superiori a 80°C, si dovrà usare, caso per caso, il fattore correttivo Ft corrispondente alla temperatura presente TrC°.

Nel riquadro a lato sono indicati quattro fattori di correzione, i quali dovrebbero contemplare i casi più frequenti. Se la capacità di carico di un elemento a ricircolazione di sfere RK 6100 è di 715 N, con una temperatura di 250°C sarà di 715x0,75 = 536,25 N. Il range di utilizzo delle guide é compreso tra -40°C e +80°C.

300	0,60
250	0,75
120	0,90
80	1,00

Ft

TrC°

HRC

20

30

40

45

50

55

57

58

Εd

0.10

0,25

0.34

0.42

0.53

0.78

0.90

1,00

Accelerazioni

Sono consentite al limite dei 50 m/sec², purché siano verificate tutte le condizioni ideali per un perfetto funzionamento del sistema di scorrimento.

Velocità

Le guide a rulli tipo GR possono essere utilizzate per velocità fino a 50 m/min. Per velocità maggiori è bene che il Cliente consulti il ns. ufficio tecnico.

Protezione

È assolutamente necessario che le guide vengano protette da possibili infiltrazioni di impurità sia solide che liquide.

Guide rettificate in linea

È possibile realizzare carri con guide più lunghe dei tipi standard. A questo proposito le guide vengono intestate e rettificate in linea sulla lunghezza voluta.

Non si otterrà in tal modo alcuna differenza di precisione, di dolcezza del movimento e di scorrevolezza.

Nel caso di una fornitura del suddetto tipo, le guide verranno numerate in modo che l'utilizzatore possa eseguire un corretto montaggio.

0	0 1	1
		_
2	2 3	3

Caratteristiche tecniche

Lubrificazione

Normalmente le guide a rulli vengono lubrificate con un leggerissimo velo di olio per cuscinetti, molto fluido, applicato in fase di montaggio. In pratica è come se lavorassero a secco, proprio per sfruttare maggiormente le caratteristiche di scorrevolezza e precisione.

Si possono tuttavia utilizzare, a seconda dei casi, olii (tipo CLP o HLP con viscosità da ISO V6 15 e 100 secondo DIN 51519) o grasso al sapone di litio KP2K secondo DIN 51502 e 51825.

Precarico

Avviene normalmente con grani di registrazione in corrispondenza alle viti di ancoraggio, utilizzando appropriate chiavi dinamometriche. Un sistema di guide può essere precaricato tramite lardone conico oppure tramite un cilindro o un cuneo, ma questi tipi di precarico, molto più complessi, richiedono un'esecuzione perfetta delle lavorazioni delle strutture portanti le guide, cosa che non in tutti i casi il Cliente può o vuole predisporre.

Il precarico può variare da un 2% a un 20% della massima capacità di carico ammissibile.

Durata

Abbiamo avuto modo di constatare quali fattori possano influenzare negativamente la durata di un sistema di guide a rulli (temperatura e durezza). Oltre a quelli già esposti ne ricordiamo altri che sono non meno importanti dei primi:

- 1) tolleranze di lavorazione dei supporti delle guide non rispondenti a quanto indicato nelle condizioni ideali per il montaggio delle guide;
- 2) montaggi non rispondenti a quanto indicato nel ns. catalogo o dalle indicazioni del ns. Uff. Tecnico;
- 3) presenza di particelle solide o impurità tra gli elementi volventi;
- 4) si deve sempre evitare di sottoporre il sistema al carico statico massilo ammissibile prima che sia stato effettuato un breve rodaggio dello stesso.

Appurato che le condizioni di cui sopra siano rispettate, la durata delle guide si può calcolare tenendo conto della seguente formula:

$$L = FD \times \left(\frac{P}{F1}\right)^{P} \times 10^{5} \text{ (m)}$$

dove:

L = durata nominale espressa in metri

%	FD	FD	= fattore della durata corrispondente alla percentuale di superamento che si
90	1,00		vuole ottenere (riquadro a lato)
95	0,62	Р	= capacità di carico massimo ammissibile del rullo in esame in N (vedi tabella a
96	0,53		pag. 20)
97	0,44	F1	= carico a cui è sottoposto il rullo maggiormente sollecitato in N
98	0,33	р	= esponente dell'equazione della durata (10/3 per rulli, 3 per sfere)
99	0,21	Lh	= durata nominale espressa in ore
	I	Nc	= numero dei cicli completi al minuto (1 ciclo = andata + ritorno)
		С	= corsa espressa in mm

Con i seguenti dati possiamo calcolare la durata dello scorrimento:

Per rulli diametro 9 mm. P = 1300 N F1 = 200 N Durezza guida = HRC 58 Temperatura = 100 °C Probabilità di superamento 90% FD = 1

$$= 1 \times \left(\frac{1300}{200}\right)^{10/3} \times 10^5 = 513 \text{ in } 10^5 \text{ (m)}$$

Possiamo calcolare la durata nominale espressa in ore usando la seguente formula, premesso però che la corsa C = 400 (mm) e Nc numero di corse (andata + ritorno) in un minuto = 30 cicli, quindi:

Lh =
$$\frac{8,33}{\text{C x Nc}}$$
 x L = $\frac{8,33x513x10^5}{400x30}$ = 35610 ore

Condizioni ideali per il montaggio delle guide

La figura sottostante rappresenta le due strutture sulle quali normalmente vengono montate le guide a rulli, rullini o sfere.

Affinché le guide possano rispondere integralmente ai requisiti riportati sul ns. catalogo è assolutamente necessario che la struttura sulla quale vengono montate, dia delle buone garanzie di rigidità in modo tale che sottoposte allo sforzo del precarico non assumano posizioni particolari variando la geometria ideale del contatto tra rulli e pista di rotolamento.

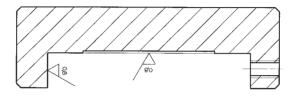
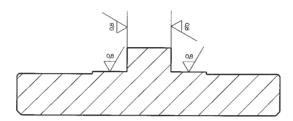



Fig. 2

Per un corretto montaggio si devono assolutamente verificare le seguenti condizioni:

- 1) le superfici di appoggio devono essere rettificate o nel peggiore dei casi fresate, cercando, nel secondo caso, di curare la lavorazione in modo particolare;
- dalla lavorazione dipende quindi la planarità ed il parallelismo dei piani indicati con il convenzionale segno di rettifica, i quali devono rispettare le tolleranze riportate nel grafico a pag. 7;
- 3) è molto importante che il piano di appoggio delle guide rispetto alla spalla relativa, abbia un angolo di 90°;
- 4) i fori devono essere svasati onde evitare che le guide possano assumere una posizione non corretta.

Come si può notare a pag. 13 tutte le guide sono dotate di fori di ancoraggio filettati. Ciò per consentire di fissare la guida in due modi (vedi fig. 3 e fig. 4).

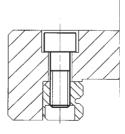


Fig. 3

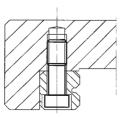
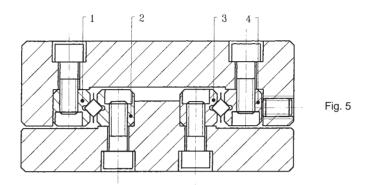



Fig. 4

Condizioni ideali per il montaggio delle guide

Montaggio delle guide

Comunque sia il tipo di montaggio consigliamo di seguire ordinatamente le seguenti fasi:

- 1) montaggio delle guide n. 2 e n. 3, le quali, prima del fissaggio, devono essere tenute ben pressate contro le loro superfici di appoggio;
- 2) controllo del planparallelismo delle guide montate;
- 3) montaggio della guida n. 1 osservando le stesse norme usate per la n. 2 e la n. 3;
- 4) montaggio della guida di registrazione n. 4 senza bloccare le viti di fissaggio;
- 5) inserire le relative gabbie;
- 6) montare le viti o piastrine terminali;
- 7) spostare la parte mobile a fine corsa, indifferentemente in un senso o nell'altro, in modo che le gabbie si centrino da sole;
- 8) precaricare i grani di registrazione in modo da eliminare totalmente i giochi, senza serrare eccessivamente le viti. I valori di precarico variano da un 2% a un 30% della capacità di carico dinamico P del rullo (vedi tabella a pag. 20), in conformità del tipo di applicazione e quindi in funzione del tipo di guida, della rigidità che si vuole ottenere e della disposizione dei carichi stessi. Comunque sia, la tavola dovrà sempre avere una grande sensibilità di scorrimento;
- 9) bloccare le viti di fissaggio della guida n. 4;
- 10) il marchio "ROSA" della guida deve sempre essere visibile affinché la guida sia montata correttamente;
- a montaggio effettuato assicurarsi che il fine corsa del comando agisca prima che le gabbie urtino le viti o le piastrine di arresto.
- 12) per guide in coppia, come la fig. 6, le quote A e A1 saranno contenute in ± 0,01 mm (a richiesta con supplemento prezzo);

Fig. 6

N.B.: Nella fase di precarico accertarsi che le gabbie siano sempre dietro il grano di registro sul quale si sta agendo.

Condizioni ideali per il montaggio delle guide

Calcolo della lunghezza delle gabbie

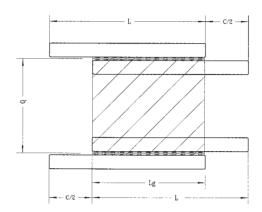


Fig. 7

Q = Interasse

L = Lunghezza guida

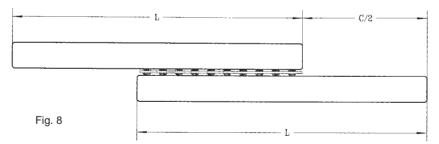
C = Corsa

Lg = Lunghezza gabbia

NR = Numero dei rulli

t = Passo dei rulli

F = Forza agente sul sistema di guide

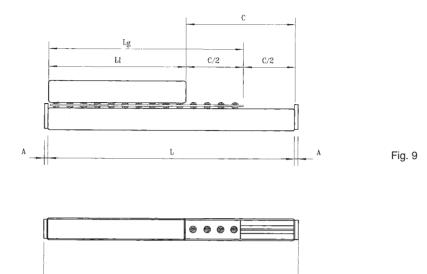

P = Massimo carico dinamico unitario

PM = Massimo carico dinamico del movimento

NRP = Numero dei rulli portanti

Supponiamo di aver scelto il tipo di guida GR9 400 in quanto la ns. corsa è: C=250 mm. La lunghezza della gabbia sarà data dalla relazione Lg=L-1/2=400-(250:2)=275 mm

- **N.B.:** Nella scelta della lunghezza della guida, in funzione di una determinata corsa, si devono tenere in considerazione i sequenti punti:
 - 1) se la guida avrà una lunghezza fino a 400 mm saranno accettabili tutte le corse da 1 mm a 2/3 della lunghezza della guida stessa;
 - 2) se la guida avrà una lunghezza oltre 400 mm saranno accettabili tutte le corse da 1 mm fino alla stessa lunghezza della guida. Se ne deduce che in una slitta formata da quattro guide di uguale lunghezza, per es. pari a 500 mm, la parte mobile potrà sporgere della metà della propria lunghezza (condizione limite) fig. 8.


Calcolo del numero dei rulli di una gabbia e della relativa capacità di carico

Dalla relazione precedente Lg = 275 mm Tipo guida GR9 - Rullo diam. 9 mm

Analizzando la tabella "Dimensioni gabbie" a pag. 20 troveremo il valore del passo "t" relativo al rullo in esame = 18 mm quindi NR = 275 : 18 = 15.

È molto importante considerare che i rulli portanti sono esattamente la metà di 15 in quanto alternati. La massima capacità di carico del sistema, essendo quest'ultimo composto da n. 2 gabbie, equivale alla sommatoria dei rulli in una sola gabbia. Essendo P = 1300 N capacità di carico di un rullo (vedi tabella dimensioni gabbie a pag. 20), la capacità di carico totale del sistema sarà: P x NR = 1300 x 15 = 19.500 N.

Applicazione di guide di diversa lunghezza con gabbie sporgenti

Nel caso in cui si voglia realizzare un movimento composto da un cursore per esempio lungo 200 mm che scorra su una struttura lunga 800 mm per una corsa C = 600 mm e supposto che i carichi siano stati verificati si dovranno scegliere i seguenti materiali:

- N. 2 guide tipo GR9 800
- N. 2 guide tipo GR9 200 con smussi
- N. 2 gabbie tipo BB9 con 27 rulli
- N. 4 piastrine terminali tipo GC9

In questo caso il calcolo verrà eseguito considerando la lunghezza della guida più lunga quindi:

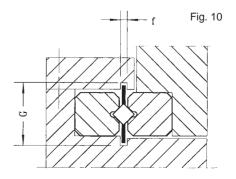
$$Lg = L - C/2 = 800 - 300 = 500 \text{ mm}$$

 $NR = Lg/t = 500/18 = 27,77$

per cui la gabbia sarà composta da 27 rulli.

Necessitano inoltre gli smussi sulle guide GR9 200 in quanto non devono assolutamente alterare lo scorrimento della tavola quando spostandosi entra sui rulli. La capacità di carico del movimento sarà data dalla capacità di carico di ogni singolo rullo (P) per il numero dei rulli interposti tra le guide (NRP) per cui:

NRP = L_1/t = 200/18 = 11,11 (11 rulli - approssimazione per difetto) per cui essendo P = 1300 N, sarà 11 x 1300 = 14.300 N.


Per applicazioni del tipo sopra esposto è assolutamente indispensabile creare delle scanalature (vedi quote in tabella a pag. 20 e disegno sottostante) onde potere guidare le gabbie (solo tipi GR).

Si ovvia in tal modo allo sbandieramento delle stesse durante il movimento.

Nel tipo di applicazione sopra esposto le piastrine terminali tipo GC senza tergipista dovranno essere sempre montate alle estemità della guida lunga.

Applicazioni di questo tipo possono essere realizzate anche con guide RM + RV oppure GR + T.

N.B.: Le guide corte dovranno sempre avere gli arrotondamenti (lavorazione supplementare eseguita nel ns. stabilimento).

Esempio di tabella di collaudo per guide GR

Via Quasimodo 22/24
20025 LEGNANO MI
- ITALY -

Resn				

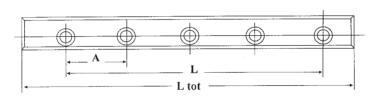

TAB-001-1 rev.2

TABELLA DI COLLAUDO

Guida: GR		 •••••	
n° di commes	ssa :	 	

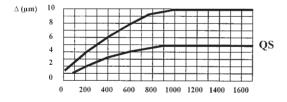
	GR
Errore max ammesso	± 0,2 mm
Errore rilevato	

	GR1	GR2	GR3	GR6	GR9	GR12
A	10	15	25	50	100	100
Errore max ammesso	± 0,3 mm					<u>; </u>
Errore rilevato					T	
L	L < 350 mm			L > 350 mm		
Errore max ammesso	± 0,3 mm		± 0,8 ‰ L			
Errore rilevato			* -			
Errore max ammesso sulla lunghezza guida (Ltot)	Ltot < 300 mm ± 0,3 mm		Ltot > 3	300 mm	± 1‰ Ltot	
Errore rilevato						

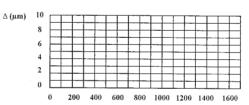
Rugosità max ammessa riferita alle piste di rotolamento	0,3 RA
Rugosità rilevata	
Durezza	60 ± 2 HRC
Durezza rilevata	

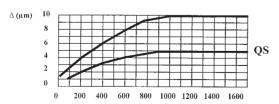
Esempio di tabella di collaudo per guide GR


	GR	GR (QS)
Errore max ammesso X	± 0,005 mm	± 0,0025 mm
Errore rilevato		

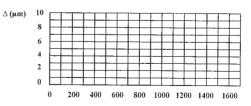


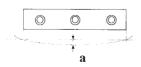
	GR
Errore max ammesso Y	0 / -0,1 mm
Errore rilevato	


Divergenza del parallelismo sulla lunghezza



ERRORE RILEVATO





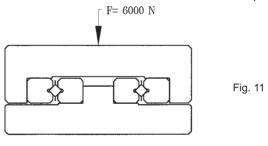
ERRORE AMMESSO

ERRORE RILEVATO

Esempio di calcolo e verifica dei carichi

A causa delle deformazioni elastiche di un sistema lineare e quindi della inuniformità della disposizione dei carichi unitari, sono stati adottati dei coefficienti teorici di sicurezza (CTS) i quali considerano il perfetto contatto dell'elemento volvente con le piste nella quantità indicata in tabella:

CTS rulli incrociati	2
CTS sfere	4
CTS rullini	1


Esempio N. 1

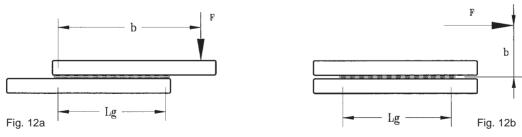
Le caratteristiche delle guide, gabbie e corsa, corrispondono alla tavola tipo TR9-310, con carico centrato sulla mezzeria della tavola:

- guide = GR9 300
- $-\cos a = 180 \text{ mm}$
- gabbie = AA9 con 11 rulli
- -F = 6000 N
- -Lg = 210 mm
- precarico = 10%
- carico al quale è sottoposto ogni rulli = $\frac{6000}{11}$ = 545,5 N
- peso parte mobile su un rullo = 80 N : 11 (NRP) = 7,3 N

È necessario inoltre, tener conto del precarico dato alle guide, che espresso in N è il 10% di 545,5 N = 54,6 N

La sommatoria delle F che agiscono sulla tavola sotto forme diverse (precarico, carico effettivo, peso ecc.) deve essere inferiore a P che nel ns. caso corrisponde a 1300 N

Quindi:


545,5 + 7,3 + 54,6 = 607,4 N

607,4 N < 1300 N

Verificato positivamente.

Esempio N. 2

Carico posto sulla mezzeria della tavola e a sbalzo sull'asse longitudinale (fig. 12a). Forza parallela allo scorrimento sulla mezzeria della tavola ad una distanza b (fig. 12b).

Le caratteristiche delle guide, gabbie a rulli e corsa, corrispondono alla tavola tipo TR6-310, quindi:

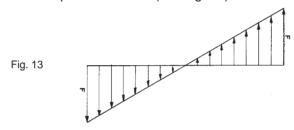
- -NR = 16
- -NRP = 16:2=8
- F3 precarico = 8%
- F2 peso tavola superiore = 45 N
- -F = 200 N
- b = 300 mm
- Lg = 180 mm
- CTS rulli incrociati = 2

Esempio di calcolo e verifica dei carichi

Il calcolo da eseguire vale sia per la fig. 12a quanto per la fig. 12b e tiene conto delle seguenti relazioni:

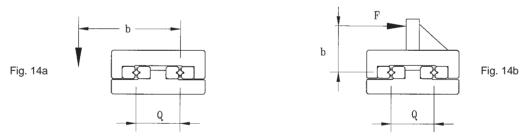
$$F1 = \frac{Fxb}{LgxCTS} = \frac{200x300}{180x2} = 166,7 \text{ N}$$

F2 = 45 N : 16 = 2,8 N


F3 = 8% x 166,7 = 13,3 N

 $\Sigma F = F1 + F2 + F3 < P = 166,7 + 2,8 + 13,3 = 182,8 N < 530 N$

530 N rappresentano la capacità di carico max. ammissibile di un rullo diametro 6 (vedi tabella a pag. 20).


Questo tipo di calcolo tiene conto solo dei rulli posti alle estremità e quindi della situazione di lavoro meno favorevole.

È anche vero che se solo i rulli alle estremità fossero sottoposti al carico massimo, le guide e la struttura sulla quale sono fissate dovrebbero deformarsi permanentemente. Avremo in tal modo un carico massimo alle estremità che decrescerà nel centro sino a raggiungere un valore prossimo allo 0 (vedi fig. 13).

Esempio N. 3

Forza posta lateralmente a sbalzo e normale alla struttura superiore della tavola (fig. 14a). Forza posta a sbalzo, normale al fianco e parallela alla struttura superiore della tavola (fig. 14b).

Le caratteristiche delle guide, gabbie e corsa corrispondono alla tavola tipo TR3-155, quindi:

b = 120 mm

Q = 28 mm

NR = 21

NRP = 21/2 = 10.5 che considereremo 10

F3 precarico = 10%

F2 peso tavola superiore = 7 N

P = 130 N rullo.

Abbiamo inoltre una F indicata sulle 2 figure = 160 N posta a mm 120. Per calcolare quale sia la forza che agisce su ogni rullo si esegue il seguente rapporto tra il momento reagente e quello resistente:

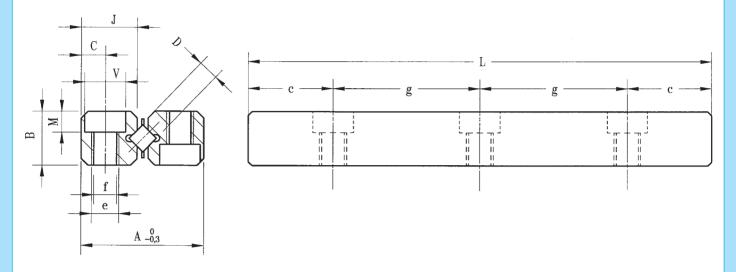
$$F1 = \frac{Fxb}{QxNRP} = \frac{160x120}{28x10} = 68,6 \text{ N}$$

F2 = 0.33 N

F3 = 10% di 68,6 = 6,86 N

 $\Sigma F = F1 + F2 + F3 = 68,6 + 0,33 + 6,86 = 75,8 N < 130 N$

P rullo diametro 3 = 130 N (vedi tabella a pag. 20).


N.B.: per applicazioni non contemplate nel catalogo interpellate il ns. ufficio tecnico.

GUIDE «GR» A RULLI INCROCIATI O A SFERE

Le guide tipo GR sono dei cuscinetti lineari il cui movimento può avvenire su rulli incrociati o su sfere. La differenza sostanziale è la diversa capacità di carico tra rulli e sfere che si può esprimere con un rapporto di circa 10: 1 variabile a seconda del diametro dell'elemento volvente preso in considerazione. La sfera ha il vantaggio di un miglior funzionamento nella malaugurata eventualità in cui dovessero entrare delle impurità sulle piste di rotolamento, come nel caso in cui non venga rispettata la geometria delle lavorazioni della struttura sulla quale sono ancorate le guide, obbligandole ad una posizione non corretta. Queste guide hanno delle buone capacità di carico in funzione delle sezioni, della lunghezza e delle relative corse. Le stesse offrono inoltre la possibilità di realizzare movimenti con ingombri minimi. A seconda del tipo di applicazione, orizzontale, ribaltata o verticale vengono utilizzate gabbie e terminali diversi (vedi pag. 20 e 21).

Guide normalizzate su rulli «GR»

Denominazione	Tipo guida	Peso guida in gr.	L	g	С	D	A	В	J	С	е	f	V	М
	GR 1 020	02	20	1x10										
	GR 1 030	03	30	2x10										
	GR 1 040	04	40	3x10										
	GR 1 050	05	50	4x10										
	GR 1 060	06	60	5x10										
GR1	GR 1 070	07	70	6x10	5	1,5	8,5	4	3,9	1,8	M2	1,65	3	1,4
	GR 1 080	08	80	7x10										
	GR 1 090	09	90	8x10										
	GR 1 100	10	100	9x10										
	GR 1 120	12	120	11x10										
	GR 1 140	14	140	13x10										
	GR 2 030	06	30	1x15										
	GR 2 045	09	45	2x15										
	GR 2 060	12	60	3x15										
	GR 2 075	15	75	4x15										
	GR 2 090	18	90	5x15										
GR2	GR 2 105	22	105	6x15	7,5	2	12	6	5,5	2,5	M3	2,5	4,3	2,0
	GR 2 120	25	120	7x15										
	GR 2 135	28	135	8x15										
	GR 2 150	31	150	9x15										
	GR 2 180	37	180	11x15										
	GR 2 210	44	210	13x15										
	GR 3 050	23	50	1x25										
	GR 3 075	34	75	2x25										
	GR 3 100	45	100	3x25										
	GR 3 125	56	125	4x25										
	GR 3 150	67	150	5x25										
GR3	GR 3 175	78	175	6x25	12,5	3	18	8	8,2	3,5	M4	3,3	6	3,2
	GR 3 200	89	200	7x25										
	GR 3 225	100	225	8x25										
	GR 3 250	111	250	9x25										
	GR 3 275	122	275	10x25										
	GR 3 300	133	300	11x25										

Guide normalizzate su rulli «GR»

Denominazione	Tipo guida	Peso guida in gr.	L	g	С	D	Α	В	J	С	е	f	v	М
	GR 6 100 GR 6 150 GR 6 200 GR 6 250	145 220 295 370	100 150 200 250	1x50 2x50 3x50 4x50										
GR6	GR 6 300 GR 6 350 GR 6 400 GR 6 450 GR 6 500 GR 6 550 GR 6 600	445 520 595 670 745 815 885	300 350 400 450 500 550 600	5x50 6x50 7x50 8x50 9x50 10x50 11x50	25	6	31	15	13,9	6	M6	5,2	9,5	5,2
GR9	GR 9 200 GR 9 300 GR 9 400 GR 9 500 GR 9 700 GR 9 800 GR 9 900 GR 9 1000 GR 9 1100 GR 9 1200	630 945 1260 1575 1890 2205 2520 2835 3150 3465 3780	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	9	44	22	19,7	9	M8	6,8	10,5	6,2
GR12	GR12 200 GR12 300 GR12 400 GR12 500 GR12 600 GR12 700 GR12 800 GR12 900 GR12 1000 GR12 1100 GR12 1200	1040 1565 2090 2615 3140 3665 4190 4715 5240 5765 6290	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	12	58	28	25,9	12	M10	8,5	13,5	8,2

Gabbie

Tipo CC

A rulli incrociati non trattenuti per guide GR1-GR2, per corsa orizzontale e verticale, solo passo t; mat: ottone.

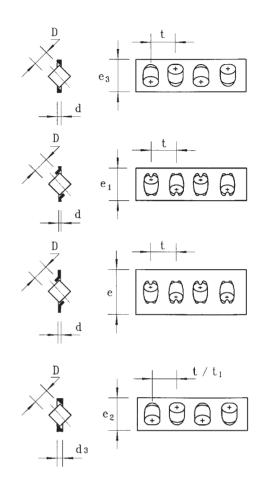
Tipo AA

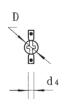
A rulli incrociati trattenuti per guide GR2÷GR12 per corsa orizzontale; solo passo t; mat: lamierino in acciaio.

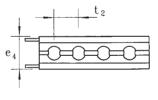
Tipo BB

A rulli incrociati trattenuti per guide GR3÷GR9 per corsa orizzontale e verticale solo con guide di diversa lunghezza e con velocità basse; solo passo t; mat: lamierino in acciaio (vedere pag. 12 fig. 10).

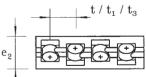
Tipo DD

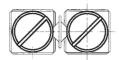

A rulli incrociati non trattenuti per guide GR3÷GR12 per corsa verticale e orizzontale con forti accelerazioni; DD3 solo passo t, DD12 solo passo t1, DD6-9 passo t/t1; mat: ottone.

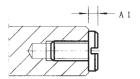

Tipo PS


A sfere trattenute per guide GR1÷GR12, per corsa orizzontale e verticale; solo passo t2; mat: poliammide. PS6÷PS12 rinforzate con anima in acciaio.

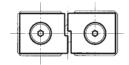
Tipo PR

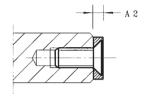

A rulli incrociati trattenuti per guide GR1÷GR9, per corsa orizzontale e verticale; solo passo t per guida da GR1 a GR3 e passo t1 per GR9; passo t3 per GR6; mat: poliammide.

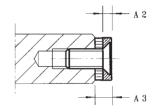



												-					P	(N)
Tipo Guida	D	t	t1	t2	t3	d	d2	d3	d4	f*	е	e1	e2	е3	e4	G*	P rullo	P sfera
GR 1	1,5	3	_	2,2	_	0,5	0,5	_	0,45	_	_	_	3,8	3,5	3,5	_	50	9
GR 2	2	4	_	4	_	0,8	0,8	_	0,75	-	_	5,5	5,5	5,5	5	_	85	15
GR 3	3	5	_	4,2	_	0,5	1	1	1	1	12	7,5	7	-	7	13	130	25
GR 6	6	12	9	9	8,5	0,8	2,7	2,7	2,5	1,5	20	14	15	-	14	21	530	65
GR 9	9	18	14	14	_	1	4	3	3,2	2	30	19,5	20	-	20	32	1300	150
GR12	12	22	18	15,5	_	1,2	4	4	4	2,5	35	25	25	_	20	37	2500	260

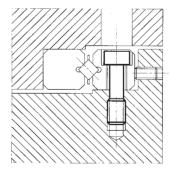
^{*} Riferimento a pag. 12 fig. 10.


Terminali


GA = Per applicazioni orizzontali


GB = Per applicazioni verticali e orizzontali con accelerazioni (Non disponibile per guida tipo GR1)

GC = Per applicazioni orizzontali, verticali e con guide di diversa lunghezza con o senza tergipista (montaggio sulle guide più lunghe)
(Non disponibile per guida tipo GR1 e GR2)



Tipo guida	GR1	GR2	GR3	GR6	GR9	GR12
A1	1,5	2	2	3	3	3
A2	_	3	2	3	4	5
A3	_	_	3	5	6	8

Viti di ancoraggio con gambo scaricato

I vantaggi ottenibili con dette viti sono i seguenti:

- la possibilità di montare le guide anche dove la struttura portante non è stata forata nel modo più perfetto;
- l'eliminazione degli errori da foro a foro che inevitabilmente si vengono a creare sulla guida durante il trattamento termico;
- la possibilità di applicazione delle guide nel caso in cui per la guida registrabile siano usate viti passanti (vedi fig. n. 15).

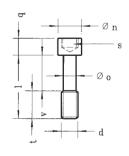
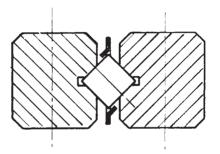


Fig. 15

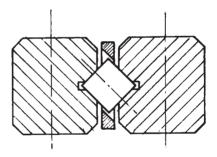
Dimensioni	GR3	GR6	GR9	GR12
1	12	20	30	40
Øn	5	8	8,5	11,3
Øo	2,3	3,9	4,6	6,25
d	M3	M5	M6	M8
q	3	5	6	8
v	7	12	18	23
t	5	8	12	17
S	2,5	4	5	6
Codice	VM3	VM5	VM6	VM8


Esempi di ordinazione

Per facilitare gli uffici acquisti e per snellire le ordinazioni e quindi le consegne, Vi consigliamo di comunicarci i seguenti dati: tipo e n. delle guide, tipo e n. delle gabbie, n. dei rulli per gabbia, o lunghezza gabbia o corsa, tipo e n. delle viti o piastrine terminali, tipo di applicazione se orizzontale o verticale; considerando che un movimento completo è composto da: n. 4 guide, n. 2 gabbie e n. 8 viti o piastrine terminali.

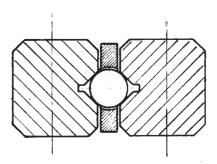
Per movimenti orizzontali a rulli

Guide GR3 125 Corsa = 35 mm


- N. 4 guide tipo GR3 125
- N. 2 gabbie tipo AA3 con 21 rulli
- N. 8 viti terminali tipo GA3

Per movimenti verticali a rulli

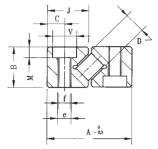
Guide GR6 300 Corsa = 120 mm

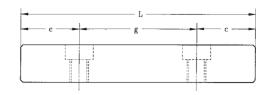

- N. 4 guide tipo GR6 300
- N. 2 gabbie tipo DD6 con 20 rulli
- N. 8 piastrine terminali tipo GB6

Per movimenti orizzontali e verticali a sfere con piastrine terminali e tergipista

Guide GR9 400 Corsa = 185 mm

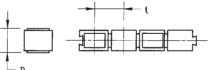
- N. 4 guide tipo GR9 400
- N. 2 gabbie tipo PS9 con 22 sfere
- N. 8 piastrine terminali tipo GC9 con tergipista




GUIDE "NG"

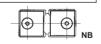
L'evoluzione delle guide GR ha portato alla realizzazione di guide dimensionalmente più piccole di sezione ma con migliori caratteristiche di capacità di carico e quindi di rigidità. Questo nuovo tipo di guida, denominata NG, prevede due tipi di sezione le cui dimensioni sono riportate nella pagina seguente.

Guide "NG"



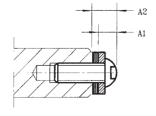
Denominazione	Tipo guida	Peso in g	L	g	С	D	A	В	J	С	е	f	V	М
	NG 4 050	27	50	1x25										
	NG 4 075	41	75	2x25										
	NG 4 100	55	100	3x25										
	NG 4 125	69	125	4x25										
	NG 4 150	83	150	5x25										
NG 4	NG 4 175	97	175	6x25	12,5	4,5	19	9	9	3,5	МЗ	2,65	5,5	2,7
	NG 4 200	111	200	7x25										
	NG 4 225	125	225	8x25										
	NG 4 250	139	250	9x25										
	NG 4 275	153	275	10x25										
	NG 4 300	167	300	11x25										
	NG 6 100	92	100	3x25										
	NG 6 150	138	150	5x25										
	NG 6 200	184	200	7x25										
NG 6	NG 6 250	230	250	9x25	12,5	6,5	25	12	12	5	M4	3,3	7	3,2
	NG 6 300	276	300	11x25										
	NG 6 350	322	350	13x25										
	NG 6 400	368	400	15x25										

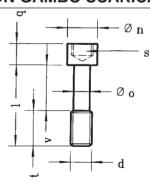
GABBIA


Tipo BN A rulli trattenuti; per corsa orizzontale e verticale. Materiale: delrin

Tipo guida	Tipo gabbia	t	D	C (N)
NG 4	BN 4	6,5	4,5	850
NG 6	BN 6	8,5	6,5	1800

PIASTRINE


NB = per applicazioni orizzontali e verticali

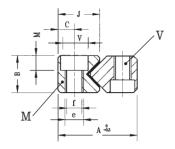

NC = per applicazioni con guide di diversa lunghezza. Vengono applicate sulle guide più lunghe. Possono essere corredate da tergipista

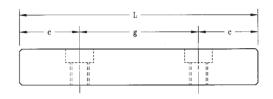
Tipo guida	A1	A2
NG 4	4	5,5
NG 6	4	5,5

VITI DI ANCORAGGIO CON GAMBO SCARICATO

Dimensioni	NG 4	NG 6
I	12	16
Øn	4,5	5,5
Øo	1,85	2,3
d	M2,5	М3
q	2,5	3
٧	7	11
t	5	5
S	2	2,5
Codice	VBN 4	VBN 6

GUIDE "M/V"

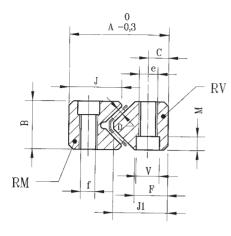

Le guide lineari tipo M/V sono guide con riporto di materiale antifrizione le cui caratteristiche sono identiche alle guide RVA. Sostituiscono dimensionalmente le guide GR migliorandone chiaramente la rigidità. Sono indifferenti allo sporco e vengono utilizzate soprattutto per eliminare eventuali vibrazioni del sistema.

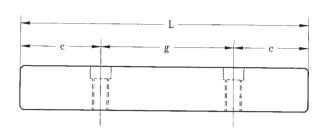

La capacità di carico unitaria per cm² varia da 4500 N (dinamico) a 7500 N (statico).

Tipo guida	Larghezza fascia d'appoggio
M3	0,3 cm
M6	0,6 cm
M9	1,2 cm
M12	1,6 cm

Guide "M/V"




Denominazione	Tipo guida	Peso in g (M)	Peso in g (V)	L	g	С	Α	В	J	J1	С	е	f	v	М
	3 050	19	25	50	1x25										
	3 075	30	38	75	2x25										
	3 100	41	51	100	3x25										
	3 125	52	64	125	4x25										
	3 150	63	77	150	5x25										
M/V	3 175	74	90	175	6x25	12,5	18	8	9	10,8	3,5	M4	3,3	6	3,1
	3 200	85	103	200	7x25										
	3 225	96	116	225	8x25										
	3 250	107	129	250	9x25										
	3 275	118	142	275	10x25										
	3 300	130	155	300	11x25										
	6 100	145	175	100	1x50										
	6 150	218	263	150	2x50										
	6 200	290	350	200	3x50										
	6 250	363	438	250	4x50										
M/V	6 300	435	525	300	5x50	25	31	15	16	19,3	6	M6	5,3	10	5,2
	6 350	508	613	350	6x50										
	6 400	580	700	400	7x50										
	6 450	653	788	450	8x50										
	6 500	725	875	500	9x50										
	9 200	640	770	200	1x100										
	9 300	955	1156	300	2x100										
	9 400	1270	1543	400	3x100										
B407	9 500	1585	1930	500	4x100										
M/V	9 600	1900	2316	600	5x100	50	44	22	24	28	9	M8	6,8	11	6,2
	9 700 9 800	2215 2530	2703 3089	700 800	6x100 7x100										
	9 900	2845	3476	900	8x100										
	9 1000	3160	3862	1000	9x100										
	12 200	1130	1224	200	1x100										
	12 300	1690	1836	300	2x100										
	12 400	2250	2448	400	3x100										
	12 500	2810	3060	500	4x100										
N//\/	12 600	3370	3672	600	5x100	E0.	EO	20	22	25.5	10	N440	0 =	15	0.0
M/V	12 700 12 800	3930	4284	700	6x100	50	58	28	33	35,5	12	M10	8,5	15	8,2
	12 800	4490 5050	4896 5508	800 900	7x100 8x100										
	12 1000	5610	6120	1000	9x100										
	12 1000	6175	6732	1100	10x100										
	12 1100	6740	7244	1200	11x100										


GUIDE «RM» E «RV»

Per le guide RM/RV a rullini, valgono gli stessi criteri di calcolo usati per le guide GR tenendo conto della diversità delle gabbie (in plastica componibili per applicazioni orizzontali, in metallo per applicazioni verticali ed orizzontali). Nei riquadri a pag. 29 si possono rilevare: il dimensionamento delle gabbie e le capacità di carico relative. Le guide RM/RV si differiscono dai tipi GR per le seguenti caratteristiche: 1) Capacità di carico notevolmente a favore delle prime. 2) Costruzione di tavole con una elevata rigidità superiore ai tipi GR in quanto il passo dei rullini è minimo, con una conseguente maggiore continuità di rotolamento. 3) Miglior funzionamento nei casi in cui la corsa sia di piccola entità in quanto un rullo di piccolo diametro riesce a lavorare su tutta la sua circonferenza. Inoltre c'è la possibilità di precaricare con più N, perché come già detto, le guide RM/RV sopportano carichi elevatissimi ed il precarico, percentualmente, è in funzione di quest'ultimi. 4) È molto importante, ancor più che nei tipi GR a rulli incrociati, curare il sistema di protezione delle guide.

Guide a rullini «RM/RV»

Denominazione	Tipo guida	Peso in gr. tipo RM	Peso in gr. tipo RV	L	g	С	D	Α	В	F	J ₁	J	С	е	f	V	М
RM/RV	92025- 200 92025- 300 92025- 400 92025- 500 92025- 600 92025- 700 92025- 800 92025- 900 92025-1000 92025-1100 92025-1200	685 1020 1355 1690 2025 2360 2695 3030 3365 3700 4035	695 1030 1365 1700 2035 2370 2705 3040 3375 3710 4045	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	2	44	22	15	24,5	24	9	M8	6,8	10,5	6,2
RM/RV	2025- 200 2025- 300 2025- 400 2025- 500 2025- 600 2025- 700 2025- 800 2025- 900 2025- 1000 2025-1100 2025-1200	900 1365 1830 2295 2760 3225 3690 4155 4620 5085 5550	900 1350 1800 2250 2700 3150 3600 4050 4500 4950 5400	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	2	52	25	18	29	28	10	M10	8,5	13,5	8,2
RM/RV	2535- 300 2535- 400 2535- 500 2535- 600 2535- 700 2535- 800 2535- 900 2535-1000 2535-1100 2535-1200	1905 2540 3175 3810 4445 5080 5715 6350 6985 7620	1965 2620 3275 3930 4585 5240 5895 6650 7205 7860	300 400 500 600 700 800 900 1000 1100 1200	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	2,5	62	30	22	35	34	12	M12	10,5	16,5	10,2
RM/RV	3045- 400 3045- 500 3045- 600 3045- 700 3045- 800 3045- 900 3045-1000 3045-1100 3045-1200	3660 4575 5490 6405 7320 8235 9150 10065 10980	3460 4325 5190 6055 6920 7785 8650 9515 10380	400 500 600 700 800 900 1000 1100 1200	3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	3	74	35	25	40	42,5	14	M14	12,5	18,5	12,2
RM/RV	3555- 500 3555- 600 3555- 700 3555- 800 3555- 900 3555-1000 3555-1100 3555-1200	6170 7410 8650 9890 11130 12370 13610 14850	6100 7320 8540 9760 10980 12200 13420 14640	500 600 700 800 900 1000 1100 1200	4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	3,5	78	45	25	45	45	14	M14	12,5	18,5	12,2

È possibile fornire guide RM e RV in un solo pezzo limitatamente ad una lunghezza di mm 1600. Per applicazioni verticali ed orizzontali con velocità ed accelerazioni superiori rispettivamente a 50 m/min e 50 m/sec² sono disponibili guide e gabbie a trascinamento forzato.

Descrizione delle gabbie a rullini

Le guide tipo RM/RV devono essere corredate di gabbie a rullini.

Esistono due tipi di gabbie, in plastica e in metallo.

Le gabbie in plastica sono formate da singoli elementi che vengono composti sfruttando gli incastri a coda di rondine di cui sono corredati e possono essere utilizzati solo per applicazioni orizzontali.

Le gabbie FF vengono fornite distese e cioè senza l'angolazione di 90° che per questo tipo di guida è necessaria.

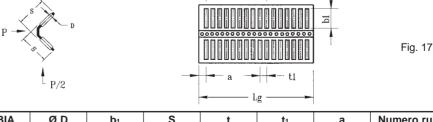
Si può ottenere l'angolo voluto immergendo la gabbia in un bagno d'olio a 80°C, con l'angolazione voluta e poi facendola raffreddare.

Per applicazioni verticali e per accoppiamenti di guide di diversa lunghezza con gabbie sporgenti sono invece indispensabili i tipi metallici HW.

I rullini che costituiscono i due tipi di gabbia sono selezionati disponendo di una tolleranza sul diametro pari a 0,001 mm. Per quanto riguarda l'ingombro, quote e caratteristiche si consultino le tabelle relative sottostanti.

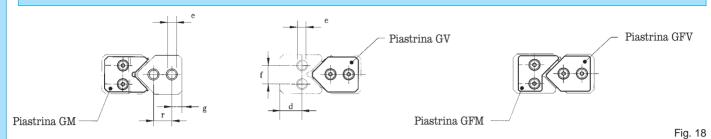
Calcolo della lunghezza della gabbia e della capacità di carico

Prendiamo in esame guide tipo RM/RV 2025-500 per ottenere una corsa di mm 200 (orizzontale) F = 15.000 N

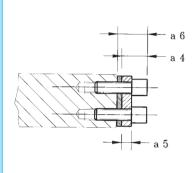

Per il calcolo della lunghezza della gabbia vale sempre la formula Lg = C/2 per cui Lg = 500 - 200/2 = 400 mm

Come abbiamo già accennato le gabbie tipo FF vengono fornite ad elementi per cui ogni elemento costituirà il passo, quindi: NE (numero degli elementi) = Lg/t = 400/32 = 12,5 elementi).

Ne deriva che se la P (capacità di carico per elemento) è di 8.680 N, la capacità di carico dell'intero sistema sarà di 104.160 N

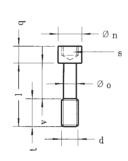

A questo punto si deve verificare sempre la condizione: P > F quindi 104.160 N > 15.000 N Nel caso in ci la slitta suddetta fosse stata montata verticalmente avremmo dovuto prendere in considerazione le gabbie rigide tipo HW15.

Tipo GUIDA	Tipo GABBIA	Ø D	b 1	S	t	а	Numero rulli x t	P/t (N)
9 2025-2025	FF2025 zw	2	6,8	15	32	2	7	8680
2535	FF2535 zw	2,5	9,8	20,5	45	2,4	8	17920
3045	FF3045 zw	3	13,8	26	60	3	9	33750
3555	FF3555 zw	3,5	17,8	31,5	75	3,2	10	55000



Tipo GUIDA	Tipo GABBIA	Ø D	b 1	S	t	t ₁	а	Numero rulli x t	P/t (N)
9 2025-2025	HW15	2	6,8	15	32	4,5	2	7	8680
2535	HW20	2,5	9,8	20,5	45	5,5	2,4	8	17920
3045	HW25	3	13,8	26	60	6	3	9	33750
3555	HW30	3,5	17,8	31,5	75	7	3,2	10	55000

Piastrine terminali con/senza tergipista per corsa orizzontale e verticale



^{*} Le piastrine GM e GV non possono essere montate contemporaneamente.

	RM/RV 9-2025	RM/RV 2025	RM/RV 2535	RM/RV 3045	RM/RV 3555
a4	8	9	11	11	11
a5	4	3	3	3	3
a6	10	11	13	13	13
е	M4	M6	M6	M6	M6
f	10	14	18	19	29
r	10	11	12	16	20
d	11	12	15	18	18
g	6	7	8	10	12

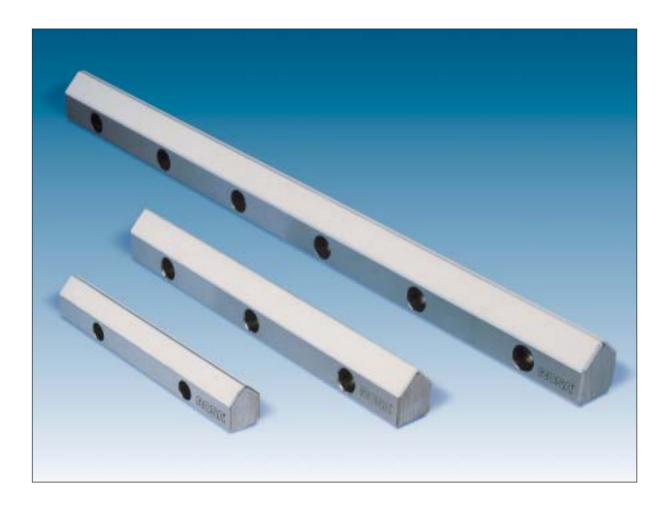
Viti di ancoraggio con gambo scaricato

	RM/RV 9 2025	RM/RV 2025	RM/RV 2535	RM/RV 3045	RM/RV 3555
ı	30	40	40	50	60
Øn	8,5	11,3	13,9	15,8	15,8
Øо	4,6	6,25	7,9	9,5	9,5
d	M6	M8	M10	M12	M12
q	6	8	10	12	12
v	18	23	22	25	35
t	12	17	18	25	25
s	5	6	8	10	10
codice	VM6	VM8	VM10	VM12	VM12/L

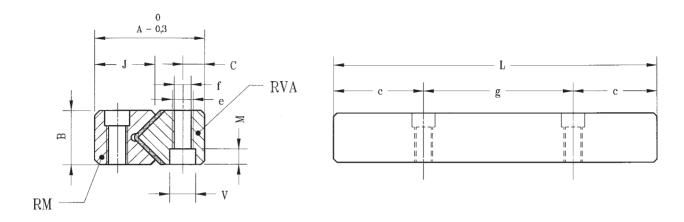
Esempi di ordinazione

Per movimenti verticali guide tipo RM/RV 2535 700 Corsa = 480 mm

- N. 2 guide tipo RM 2535 700
- N. 2 guide tipo RV 2535 700 N. 2 gabbie tipo HW 20 L = 460 mm
- N. 4 piastrine terminali tipo GM 2535


Per movimenti orizzontali e verticali con guide di diversa lunghezza tipo RM 3045 400 abbinate a guide tipo RV 3045 800 Corsa = 400 mm

- N. 2 guide tipo RM 3045 400 complete di smussi d'invito
- N. 2 guide tipo RV 3045 800
- N. 2 gabbie tipo HW 25 L = 600 mm
- N. 4 piastrine terminali tipo GV 3045


GUIDE «RVA»

Ad integramento delle guide RM/RV, si possono fornire set completi di guide RM accoppiate con guide RVA le cui piste di lavoro sono ricoperte con riporti di materiale antifrizione. Questo tipo di guida è utilizzato dove le velocità non siano eccessivamente elevate (max. 20 m/min) e dove si abbia la necessità di ottenere un'ottima rigidità del sistema di scorrimento. Il set di guide completo è composto da due guide RM temprate a cuore e da due RVA con riporto di materiale antifrizione. Per le medesime caratteristiche dimensionali le guide RV con la relativa gabbia e le RVA sono perfettamente intercambiabili fra di loro. È importante che la temperatura di esercizio non superi i 50°C. La capacità di carico unitario per cm² varia da 4500 N (dinamico) a 7500 N (statico). È possibile inoltre predisporre dei fori a richiesta e le relative canaline di lubrificazione.

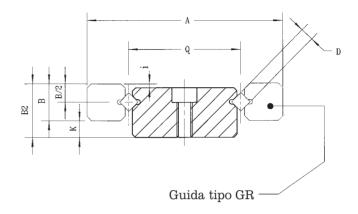
Tipo guida	Larghezza fascia d'appoggio
RVA 9 2025	1,05 cm
RVA 2025	1,15 cm
RVA 2535	1,5 cm
RVA 3045	1,75 cm
RVA 3555	2,45 cm

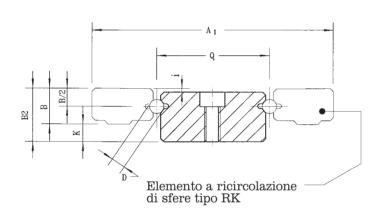
Guide «RM» e «RVA»

Tipo guida RM	Tipo guida RVA	Peso in gr. tipo RM	Peso in gr. tipo RVA	L	g	С	Α	В	J	С	е	f	V	М
92025- 200 92025- 300 92025- 400 92025- 500 92025- 600 92025- 700 92025- 800 92025- 900 92025-1000 92025-1100 92025-1200	92025-200 92025-300 92025-400 92025-500 92025-600	685 1020 1355 1690 2025 2360 2695 3030 3365 3700 4035	695 1030 1365 1700 2035	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	44	22	24	9	M8	6,8	10,5	6,2
2025- 200 2025- 300 2025- 400 2025- 500 2025- 600 2025- 700 2025- 800 2025- 900 2025-1000 2025-1100 2025-1200	2025-200 2025-300 2025-400 2025-500 2025-600	900 1350 1830 2295 2760 3225 3690 4155 4620 5085 5550	900 1350 1800 2250 2700	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	52	25	28	10	M10	8,5	13,5	8,2
2535- 300 2535- 400 2535- 500 2535- 600 2535- 700 2535- 800 2535- 900 2535-1000 2535-1100 2535-1200	2535-300 2535-400 2535-500 2535-600	1905 2540 3175 3810 4445 5080 5715 6350 6985 7620	1965 2620 3275 3930	300 400 500 600 700 800 900 1000 1100 1200	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	62	30	34	12	M12	10,5	16,5	10,2
3045- 400 3045- 500 3045- 600 3045- 700 3045- 800 3045- 900 3045-1000 3045-1100 3045-1200	3045-400 3045-500 3045-600	3660 4575 5490 6405 7320 8235 9150 10065 10980	3460 4325 5190	400 500 600 700 800 900 1000 1100 1200	3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	74	35	42,5	14	M14	12,5	18,5	12,2
3555- 500 3555- 600 3555- 700 3555- 800 3555- 900 3555-1000 3555-1100	3555-500 3555-600	6170 7410 8650 9890 11130 12370 13610 14850	6100 7320	500 600 700 800 900 1000 1100 1200	4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	78	45	45	14	M14	12,5	18,5	12,2

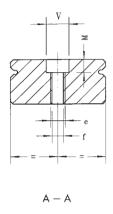
È possibile fornire guide RM in un solo pezzo limitatamente ad una lunghezza di mm 1600.

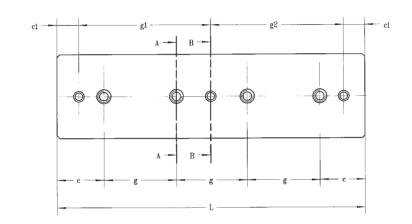
GUIDE «GRD» A DOPPIO PRISMA

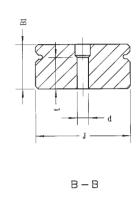

Le guide GRD sono state conceite con il doppio prisma per semplificare i montaggi, irrobustire le strutture e per speciali applicazioni in cui è richiesta una traslazione a sbalzo di un cursore.


Possono essere inoltre accoppiate con la struttura superiore delle tavole tipo TR o TRL formando in tal modo una tavola più economica.

Sono anche parte integrante dei tipi TRKD rappresentati nelle pagine successive.

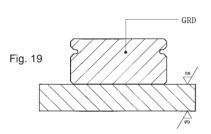

Guide «GRD»

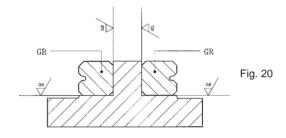




Denominazione	К	i	D	Q	B ₂	В	A 1	Α
GRD3 200 GRD3 300 GRD3 400 GRD3 500	4	0,5	3	28	12	8	57	46
GRD6 200 GRD6 300 GRD6 400 GRD6 500 GRD6 600 GRD6 700 GRD6 800 GRD6 900 GRD6 1000	5	1	6	45	20	15	94	76
GRD9 300 GRD9 400 GRD9 500 GRD9 600 GRD9 700 GRD9 800 GRD9 900 GRD9 1000	6	1	9	72	28	22	150	116

Guide «GRD»




Denominazione	L	g	С	е	f	٧	М	J	B ₁	g ₁	g ₂	C 1	d	t
GRD3 200 GRD3 300 GRD3 400 GRD3 500	200 300 400 500	3x50 5x50 7x50 9x50	25	M5	4,2	7,5	4,2	26,6	11,5	1x175 125 187,5 225	150 187,5 250	12,5	3	6,5
GRD6 200 GRD6 300 GRD6 400 GRD6 500 GRD6 600 GRD6 700 GRD6 800 GRD6 900 GRD6 1000	200 300 400 500 600 700 800 900 1000	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	50	М6	5,2	9,5	5,2	41,8	19	1x150 1x250 175 210 275 310 375 410 475	175 240 275 340 375 440 475	25	6	12
GRD9 300 GRD9 400 GRD9 500 GRD9 600 GRD9 700 GRD9 800 GRD9 900 GRD9 1000	300 400 500 600 700 800 900 1000	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	50	M8	6,8	10,5	6,2	67,4	27	1x250 175 210 275 310 375 410 475	175 240 275 340 375 440 475	25	8	16

Guide «GRD»

Le guide tipo GRD fanno parte del gruppo delle guide a rulli incrociati o a sfere e sono state realizzate in modo da evitare le lavorazioni della struttura sulla quale normalmente si montano le due guide tipo GR interne (fig. 20). In pratica sono guide che, con il loro doppio prisma, semplificano notevolmente il montaggio riducendone sensibilmente i costi. È sufficiente infatti predisporre un piano rettificato sul quale poter ancorare e spinare la guida GRD.

Possono viceversa essere usate come parte mobile, se accoppiate con due guide GR (fig. 21) o due pattini RK (parte fissa).

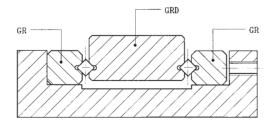


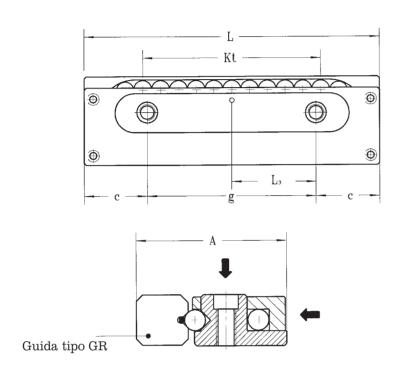
Fig. 21

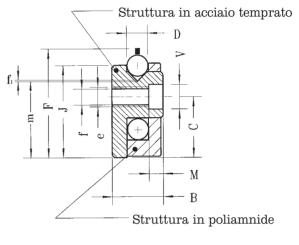
PATTINI «RK» e «RKD»

I pattini a ricircolazione di sfere tipo RK sono formati principalmente da tre elementi. Il primo di essi è composto da un corpo centrale di acciaio temperato a cuore (durezza HRC 60 ± 2) che ha la funzione di supportare il carico. Le sfere vengono incanalate nella pista di rotolamento a V della guida, trattenute opportunamente da un monoblocco realizzato in poliammide avente funzione di contenimento delle sfere dando loro la direzionalità.

I pattini accoppiati con i tipi di guide GR o GRD, consentono traslazioni lineari limitate solo dalla lunghezza della guida stessa. Molto importante è la possibilità di realizzare su due guide più carrelli montati su pattini i quali hanno scorrimenti indipendenti tra di loro.

Velocità max consentita 100 m/min.


Accelerazione max consentita 50 m/sec².


Nel caso in cui in una tavola vengano montati più di due pattini, questi ultimi devono essere selezionati in altezza.

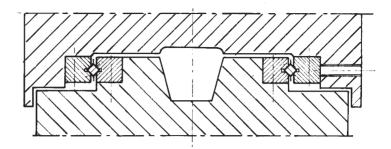
I pattini di taglia 6 e 9 possono essere forniti con elementi di smorzamento (RKD) per ridurre notevolmente la rumorosità. Questo accorgimento riduce in minima parte la capacità di carico.

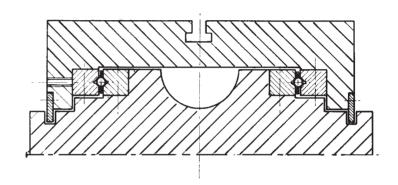
Pattini «RK» e «RKD»

Pattini tipo	RK3075	RK6100	RKD6100	RK6150	RKD6150	RK9150	RKD9150	RK9200	RKD9200
L	75	100	100	150	150	150	150	200	200
В	8	15	15	15	15	22	22	22	22
F	16,9	29	29	29	29	45,2	45,2	45,2	45,2
g	25	50	50	2x50	2x50	100	100	100	100
С	25	25	25	25	25	25	25	50	50
J	14,7	25,7	25,7	25,7	25,7	38,7	38,7	38,7	38,7
С	9	15	15	15	15	26	26	26	26
е	M4	M6	M6	M6	M6	M8	M8	M8	M8
f	3,3	5,2	5,2	5,2	5,2	6,8	6,8	6,8	6,8
V	6	9,5	9,5	9,5	9,5	10,5	10,5	10,5	10,5
M	3,2	5,2	5,2	5,2	5,2	6,2	6,2	6,2	6,2
D	3	6	6	6	6	9	9	9	9
Kt	48	60	60	102	102	90	90	144	144
Carico max. ammissibile P (N)	425	715	650	1170	1100	1650	1500	2550	2400
A	23,5	40	40	40	40	61	61	61	61
L ₃	12,5	25	25	25	25	50	50	50	50
m	11,5	19,7	19,7	19,7	19,7	32,4	32,4	32,4	32,4
f ₁	Ø 1,5	Ø 2	Ø 2	Ø 2	Ø 2	Ø3	Ø 3	Ø 3	Ø 3

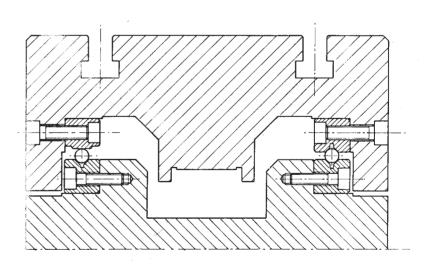
GUIDE SPECIALI

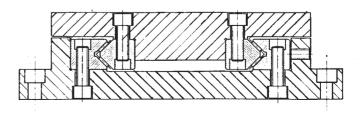
La nostra Azienda produce su disegno del Cliente anche guide speciali. Sono largamente diffuse presso i costruttori di grosse macchine utensili e non, sulle quali vengono impiegati i pattini a ricircolazione di rulli. Per utilizzare in modo ottimale i pattini a rulli sono necessarie delle guide le quali abbiano delle caratteristiche ben definite: 1) Durezza 60±2 HRC. 2) Errori di planparallelismo molto contenuti nell'ordine di mm 0,01 su 1700 mm 3) Finitura delle superfici pari a 0,3 Ra. Le guide riportate "Rosa" garantiscono queste caratteristiche e hanno il vantaggio di poter essere intercambiabili tra loro. Non utilizzando guide riportate si incorre in alcuni inconvenienti che si possono riassumere in tre punti: 1) Non sempre è possibile trattare le superfici delle guide di un basamento in ghisa in modo da ottenere le durezze sopra indicate. 2) Nel caso di guide ricavate sulla fusione la sola possibilità di trattamento è la tempera elettrica peraltro non ideale con l'impiego dei pattini. 3) Per poter rettificare le guide di un bancale molto lungo è necessaria una macchina di notevoli dimensioni non sempre esistente nelle officine.




Tutte le guide da noi prodotte vengono finite con rettificatrici della nostra consociata "Rosa Ermando S.p.A."

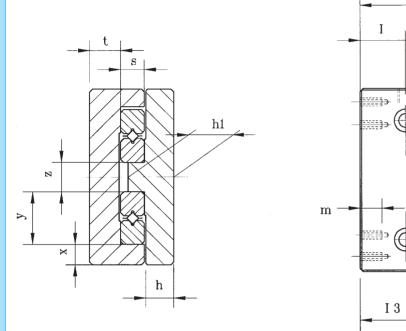
Slitte vincolate e a gravità

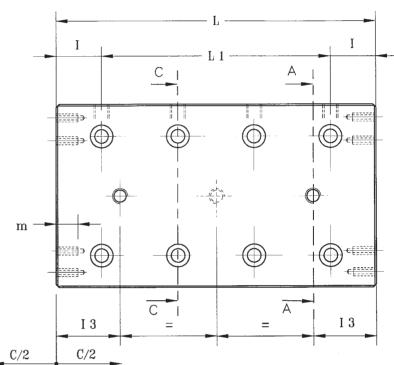

Applicazione di guide GR a rulli incrociati (slitta vincolata)


Applicazione di guide GR a sfere (slitta vincolata)

Applicazione di guide GR e T a sfere (slitta a gravità)

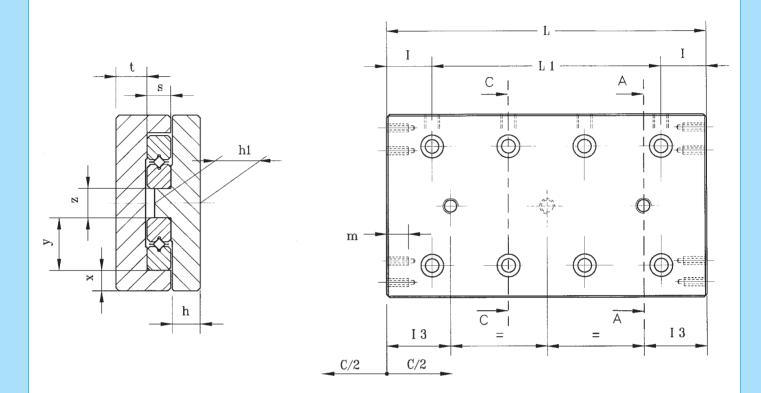
Applicazione di guide RM/RV a rullini (slitta vincolata)

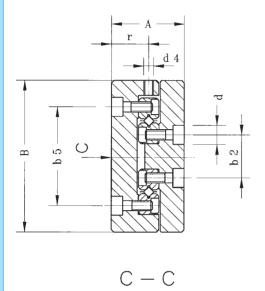


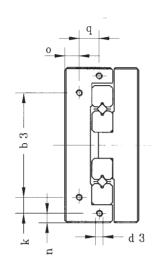

TAVOLE «TR»

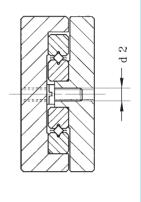
Le tavole tipo TR1-2 in acciaio e tipo TR3-6-9 ricavate da fusioni in ghisa, costituiscono un chiaro esempio di applicazione delle guide GR e sono dei componenti già montati e precaricati con delle tolleranze ben precise (vedi tabelle di collaudo). Vengono utilizzate per realizzare movimenti rettilinei di grande precisione, con corse variabili da 10 mm a 950 mm e con capacità di carico da 250 N a 48100 N. La loro struttura inferiore (fissa) è dotata di fori normalizzati per l'ancoraggio della stessa. La struttura superiore (mobile), può essere utilizzata per il fissaggio di particolari o attrezzature atte all'uso appropriato della tavola. Il cliente ha pertanto la possibilità di forare e filettare il piano dove più lo ritiene necessario. Si consiglia comunque di eseguire possibilmente queste lavorazioni a tavola smontata. Nel caso in cui ciò fosse impossibile, i fori non dovranno assolutamente essere passanti. La tavola dovrà essere inoltre protetta sia lateralmente che in testa, per evitare l'entrata di impurità.

Saranno montate gabbie e terminali adeguati all'uso della tavola, verticale ed orizzontale. Sulle tavole tipo TR9 possono essere montate guide tipo RM/RV o RM/RVA 9 2025 per aumentarne la capacità di carico.



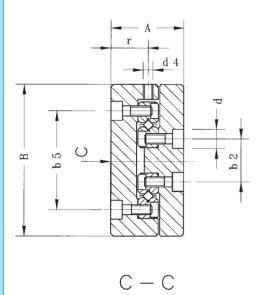

Denominazione tavola	Corsa C	L(±0,1)	L ₁	Ø Rullo	h	h ₁	I	lз	m	s	t	х	у	z
TR1 25 TR1 35 TR1 45 TR1 55 TR1 65 TR1 75 TR1 85 TR1 95 TR1 105	10 18 25 32 40 45 50 55 60	25 35 45 55 65 75 85 95 100	1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10 9x10	1,5	5,5	9	7,5	2,5 4,5 6 7,5 8,5 11 13,5 16 18,5	6	4	7	3,8	8,5	5
TR2 35 TR2 50 TR2 65 TR2 80 TR2 95 TR2 110 TR2 125 TR2 140 TR2 155	18 30 40 50 60 70 80 90 100	35 50 65 80 95 110 125 140 155	1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15 9x15	2	6,5	11	10	3 4,5 7 9,5 12 14,5 17 19,5 22	6	6	7,8	4,8	12	6

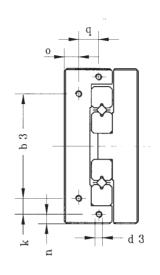

Foratura supplementare sulla struttura superiore come da disegno e tabelle per TRL1 - TRL2 a richiesta (esecuzione "B").

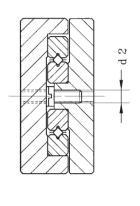


Denominazione tavola	Corsa C	L(±0,1)	L ₁	Ø Rullo	h	h ₁	I	l ₃	m	s	t	х	у	z
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	30 45 60 75 90 105 130	55 80 105 130 155 180 205	1x25 2x25 3x25 4x25 5x25 6x25 7x25	3	9	15	15	5,5 10,5 15,5 20,5 25,5 30,5 30,5	7	8	10,5	7	18	10
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	60 95 130 165 200 235 265	110 160 210 260 310 360 410	1x50 2x50 3x50 4x50 5x50 6x50 7x50	6	13	22	30	16 23,5 31,5 38,5 46,5 53,5 63,5	8	15	16	12	31	14
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	130 180 350 450 550 650 750 850 950	210 310 410 510 610 710 810 910 1010	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	9	16	29	55	27 52 17 17 17 17 17 17	10	22	21	14,5	44	28

Foratura supplementare sulla struttura superiore come da disegno e tabelle per TRL3 - TRL6 a richiesta (esecuzione "B").

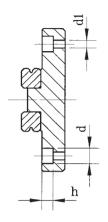


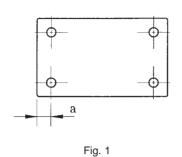




A - A

Denominazione tavola	Α	В	b 5	b ₂	bз	d	d ₂	d₃	d ₄	k	n	o	q	r	Carico max. ammissibile (N)	Peso della tavola (kg)
TR1 25 TR1 35 TR1 45 TR1 55 TR1 65 TR1 75 TR1 85 TR1 85 TR1 95 TR1 105	17±0,1	30+0,1	18,4	8,6	12	4,1	M2	M2	M2,5	-	_	3,5	-	9	250 350 450 550 650 750 900 1000 1150	0,080 0,116 0,150 0,179 0,213 0,246 0,278 0,312 0,349
TR2 35 TR2 50 TR2 65 TR2 80 TR2 95 TR2 110 TR2 125 TR2 140 TR2 155	21±0,1	40+0,1	25	11	16	6	М3	M2	M3	-	-	3,5	-	11	425 595 850 1020 1275 1445 1700 1870 2125	0,183 0,263 0,348 0,425 0,504 0,586 0,670 0,750 0,832

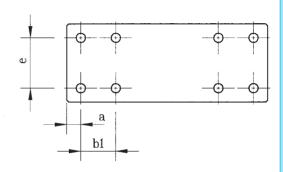
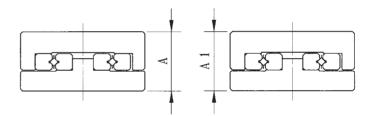


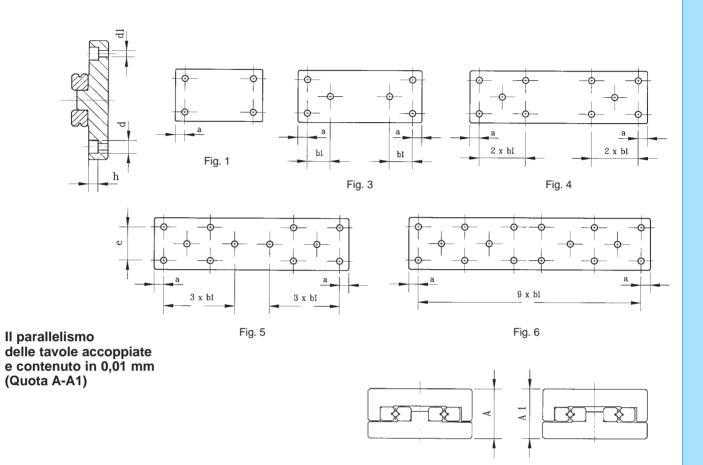


A - A

Denominazione tavola	A	В	b 5	b 2	b 3	d	d ₂	d₃	d4	k	n	o	q	r	Carico max. ammissibile (N)	Peso della tavola (kg)
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	28±0,1	60+0,1	39	17	40	7,5	M4	M3	M4	-	-	5,5	-	14,5	910 1300 1820 2210 2730 3120 3510	0,57 0,8 1,3 1,26 1,49 1,72 1,95
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	45±0,1	100±0,2	64	26	60	11	M5	M4	M5	16	4	8	15	23,5	3710 5830 7420 9540 11660 13250 15370	3,07 4,46 5,85 7,24 8,63 10,02 11,41
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	60±0,1	145±0,2	98	46	90	14,5	M8	M4	M6	22,5	5	11	20	32	11700 18200 20800 24700 29900 33800 39000 42900 48100	11,8 17,3 22,8 28,3 33,8 39,3 44,8 50,3 55,8

Fori di ancoraggio sulla struttura inferiore per tavole «TR»

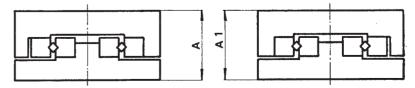




Fig. 2

Il parallelismo delle tavole accoppiate e contenuto in 0,01 mm (Quota A-A1)

Denominazione tavola	а	b1	Fig.	е	h	d	d1
TR1 25			1				
TR1 35			1				
TR1 45			1				
TR1 55			2 2				
TR1 65	3,5	10	2	22	2,5	4,1	2,5
TR1 75			2				
TR1 85			2 2 2				
TR1 95			2				
TR1 105			2				
TR2 35			1				
TR2 50			1				
TR2 65			1				
TR2 80			2				
TR2 95	5	15	2	30	3,5	6	3,5
TR2 110			2				
TR2 125			2 2 2 2 2				
TR2 140			2				
TR2 155			2				

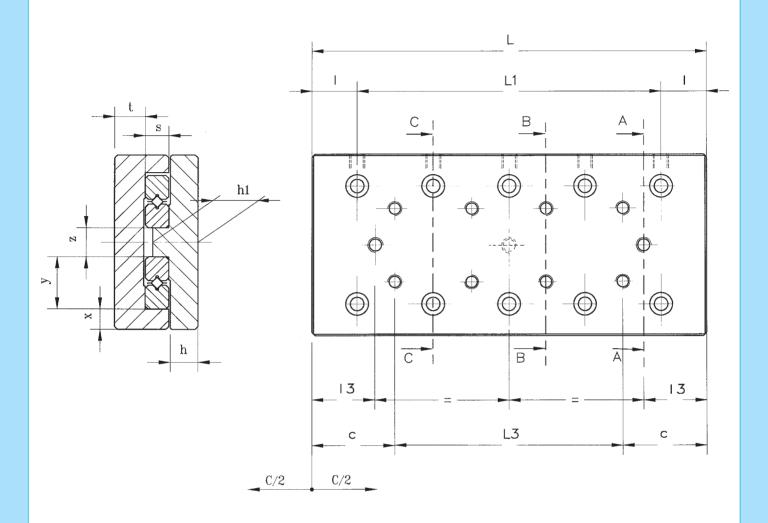
Fori di ancoraggio sulla struttura inferiore per tavole «TR»

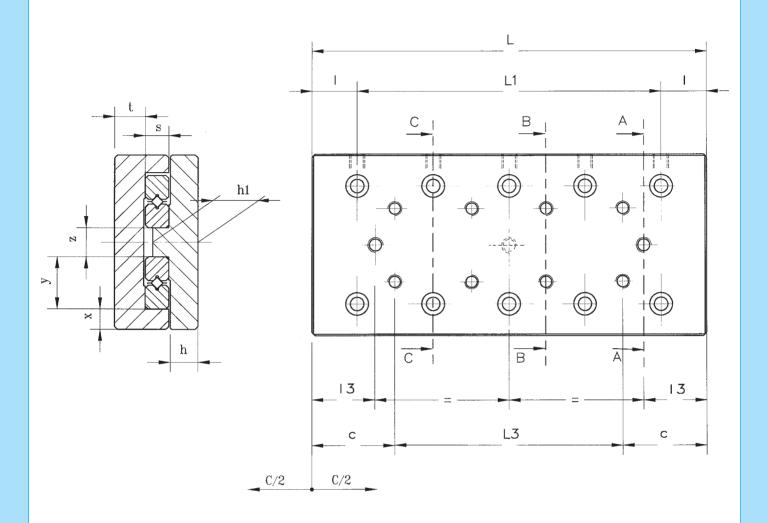


Denominazione tavola	а	b1	Fig.	е	h	d	d1
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	10	25	1 1 1 1 3 3 4	40	5	7,5	4,5
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	10	50	1 1 3 3 3 4 4	60	7	11	7
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	55	100	1 1 3 3 4 4 5 5	90	9	14	9

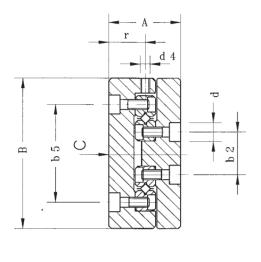
Tabella di collaudo per tavole «TR»

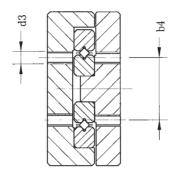
LUNGHEZZA DELLE TAVOLE IN mm TOLLERANZE ESPRESSE IN µm			da 25 a 50	da 55 a 105	da 110 a 160	da 180 a 310	da 410 a 510	da 610 a 710	da 810 a 1010
	plangrità controlleta gul longitudinolo o	errore ammesso	5	10	15	20	25	30	40
	planarità controllata sul longitudinale e sul trasversale di tutta la superficie della tavola	errore rilevato							
	parallelismo del movimento laterale	errore ammesso	2	3	3	4	5	0 610 a 0 710	6
		errore rilevato							
Q	parallelismo del movimento della struttura	errore ammesso	2	2	3	3	4	4	5
	superiore controllato in mezzeria	errore rilevato							
	quota dell'altezza A della tavola controllata	errore ammesso				± 100			
	con micrometro	errore rilevato							

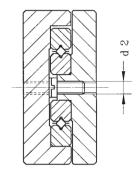

Il parallelismo delle tavole accoppiate e contenuto in 0,01 mm (Quota A-A1)


TAVOLE «TRL» IN LEGA LEGGERA

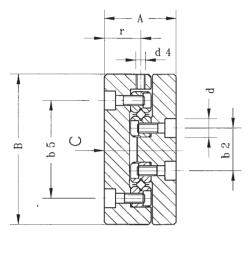
Quanto precedentemente detto per le tavole tipo TR vale anche per la serie in lega leggera, con alcune differenze per quanto riguarda il dimensionamento. La quota A è inferiore per i tipi TRL1, TRL3 e TRL6 (vedere tabelle dimensionali). La serie di tavole TRL6 contempla inoltre due lunghezze in più rispetto al tipo TR, e la serie TRL3 ne contempla quattro in più. Esse si differenziano inoltre per il peso decisamente inferiore. Ne deriva che le tavole TRL, sono più indicate per movimenti con grandi accelerazioni in quanto diminuisce la massa e quindi l'inerzia. Le tavole sono tutte provviste di fori maschiati di fissaggio.

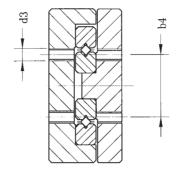


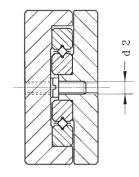



Denominazione tavola	Corsa C	L(±0,1)	Ø Rullo	L ₁	L ₃	С	h	h ₁	I	lз	s	t	x	Υ	z
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	10 18 25 32 40 45 50 55 60	25 35 45 55 65 75 85 95 105	1,5	1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10 9x10	- 1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10	12,5	4,1	7,6	7,5	3,5 4,5 6 7,5 8,5 11 13,5 15 17,5	4	4,5	4	8,5	5
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	18 30 40 50 60 70 80 90 100	35 50 65 80 95 110 125 140 155	2	1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15 9x15	- 1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15	17,5	6,5	11	10	3 4,5 7 9,5 12 14,5 17 19,5 22	6	8	5	12	6

Denominazione tavola	Corsa C	L(±0,1)	Ø Rullo	L ₁	L ₃	С	h	h ₁	I	lз	s	t	х	Y	z
TRL3 55 TRL3 80 TRL3 105 TRL3 130 TRL3 155 TRL3 180 TRL3 205 TRL3 230 TRL3 255 TRL3 280 TRL3 280 TRL3 305	30 45 60 75 90 105 130 155 180 205 230	55 80 105 130 155 180 205 230 255 280 305	3	1x25 2x25 3x25 4x25 5x25 6x25 7x25 8x25 9x25 10x25 11x25	- 1x25 2x25 3x25 4x25 5x25 6x25 7x25 8x25 9x25	27,5	8,2	12,5	15	5,5 10,5 15,5 20,5 25,5 30,5 30,5 30,5 30,5 30,5 30,5	8	8,5	7	18	10
TRL6 110 TRL6 160 TRL6 210 TRL6 260 TRL6 310 TRL6 360 TRL6 410 TRL6 460 TRL6 510	60 95 130 165 200 265 280 325 380	110 160 210 260 310 360 410 460 510	6	1x50 2x50 3x50 4x50 5x50 6x50 7x50 8x50 9x50	- 1x50 2x50 3x50 4x50 5x50 6x50 7x50 8x50	55	11,5	19,5	30	16 23,5 31 38,5 46 38,5 56 58,5 56	15	13	12	31	14

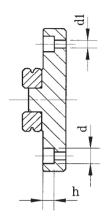


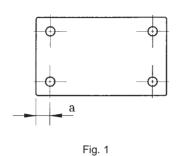

$$C - C$$


$$B - B$$

Δ		Δ
\vdash	_	\vdash

Denominazione tavola	A	В	b 5	b ₂	b ₄	d	d ₂	d ₃	d4	r	Carico max. ammissibile (N)	Peso della tavola (kg)
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	13±0,1	30±0,2	18,4	8,6	10	4,1	M2	M2	M2,5	9	250 350 450 530 650 750 900 1000 1150	0,03 0,05 0,06 0,08 0,09 0,11 0,12 0,14 0,16
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	21±0,1	40±0,2	25	11	15	6	МЗ	МЗ	МЗ	11	425 595 850 1020 1275 1445 1700 1870 2125	0,09 0,15 0,19 0,23 0,27 0,31 0,35 0,39 0,43

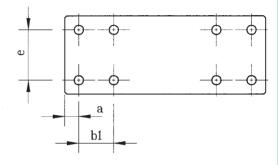
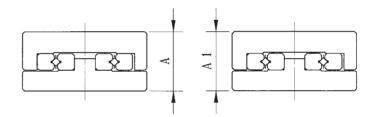

$$C - C$$

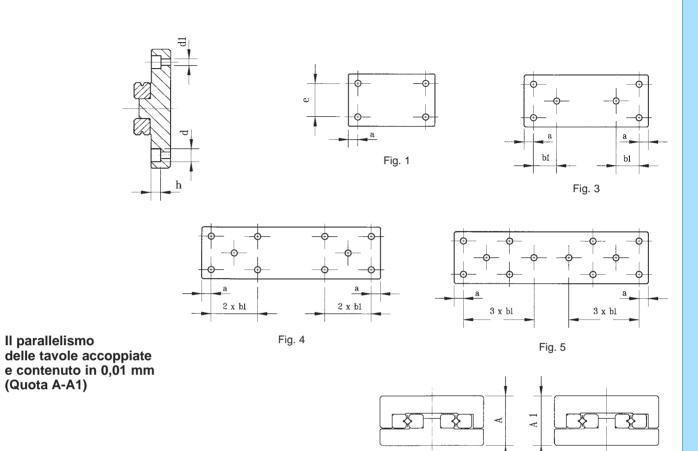

$$B - B$$

A	٨
Д	 А

Denominazione tavola	Α	В	b ₅	b ₂	b ₄	d	d ₂	d ₃	d4	r	Carico max. ammissibile (N)	Peso della tavola (kg)
TRL3 55 TRL3 80 TRL3 105 TRL3 130 TRL3 155 TRL3 180 TRL3 205 TRL3 230 TRL3 255 TRL3 280 TRL3 305	25±0,1	60±0,2	39	17	25	7,5	M4	M4	M4	12,5	910 1300 1820 2220 2730 3120 3510 3770 4160 4420 4820	0,29 0,42 0,55 0,68 0,81 0,94 1,07 1,2 1,33 1,46 1,59
TRL6 110 TRL6 160 TRL6 210 TRL6 260 TRL6 310 TRL6 360 TRL6 410 TRL6 460 TRL6 510	40±0,1	100±0,2	64	26	50	11	M5	М6	M5	20,5	3710 5830 7420 9540 11660 12720 14840 16430 18020	1,5 2,25 3 3,75 4,5 5,25 6 6,75 7,5

Fori di ancoraggio sulla struttura inferiore per tavole «TRL»


Fig. 2

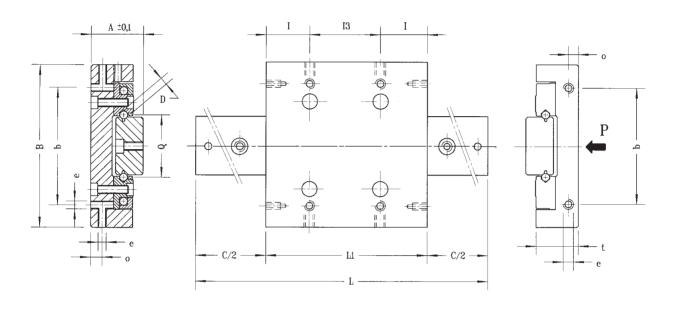
Il parallelismo delle tavole accoppiate e contenuto in 0,01 mm (Quota A-A1)

Denominazione tavola	а	b1	Fig.	е	h	d	d1
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	3,5	10	1 1 1 2 2 2 2 2 2 2	22	2,5	4,1	2,5
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	5	15	1 1 1 2 2 2 2 2 2 2	30	3,5	6	3,5

Fori di ancoraggio sulla struttura inferiore per tavole «TRL»


Denominazione tavola	а	b1	Fig.	е	h	d	d1
TRL3 55			1				
TRL3 80			1				
TRL3 105			1				
TRL3 130			1				
TRL3 155			3				
TRL3 180	10	25	3	40	5	7,5	4,5
TRL3 205			4				
TRL3 230			4				
TRL3 255			5				
TRL3 280			5				
TRL3 305			5				
TRL6 110			1				
TRL6 160			1				
TRL6 210			3				
TRL6 260			3				
TRL6 310	10	50	3	60	7	11	7
TRL6 360			3				
TRL6 410			4				
TRL6 460			4				
TRL6 510			5				

Tabella di collaudo per tavole «TRL»


LUNGHEZZA DELLE TAVOLE IN mm TOLLERANZE ESPRESSE IN µm			da 25 a 50	da 55 a 100	da 110 a 160	da 180 a 310	da 410 a 510	
	planarità controllata sul longitudinale e	errore ammesso	10	10	15	20	25	
	sul trasversale di tutta la superficie della tavola	errore rilevato						
	parallelismo del movimento laterale		4	5	6	8	9	
Q	parallelismo del movimento della struttura superiore controllato in mezzeria		2	4	6	8	9	
	quota dell'altezza A della tavola controllata					± 100		
	con micrometro	errore rilevato						

TAVOLE «TRKD»

La tavola TRKD composta da una struttura in lega, sulla quale sono montati due pattini RK scorrevoli su di una guida a doppio prisma GRD, permette di risolvere il problema delle lunghe traslazioni. La possibilità infatti di abbinare diverse guide a doppio prisma rettificandole in linea determina una corsa delle tavoletta con dei limiti ancora da stabilire, ma che sarebbe ovviamente assurdo dire illimitati. Quanto già detto nella parte riguardante le guide GRD vale in parte anche in questo caso, ma con l'alternativa di avere la tavoletta già montata con i pattini a ricircolazione di sfere. È pertanto evidente che la portata e la velocità saranno relative alle dimensioni dei pattini, comunque sempre valida la velocità sino a 120 m/min e la portata da 850 N a 3300 N. Va tenuta, pure sempre presente, la possibilità di abbinare più carrelli su di un'unica guida, richiedendone espressamente l'allineamento dei piani, in fase di ordinazione.

Tavole di tipo «TRKD»

Denominazione	Corsa C	A	В	L	L ₁	Q	Lg	D	b	е	I	I ₃	o	t	Carico max ammissibile (N)
TRKD3 200 TRKD3 300 TRKD3 400 TRKD3 500	120 220 320 420	22,5	70	200 300 400 500	80	28	48	3	53	M4	27,5	25	5	18,5	850
TRKD6 200 TRKD6 300 TRKD6 400 TRKD6 500 TRKD6 600 TRKD6 700 TRKD6 800 TRKD6 900 TRKD6 1000	95 195 295 395 495 595 695 795 895	36	120	200 300 400 500 600 700 800 900 1000	105	45	60	6	86	M6	27,5	50	8	31	1430
TRKD9 300 TRKD9 400 TRKD9 500 TRKD9 600 TRKD9 700 TRKD9 800 TRKD9 900 TRKD9 1000	145 245 345 445 545 645 745 845	49	180	300 400 500 600 700 800 900 1000	155	72	90	9	126	M8	27,5	100	10	43	3300

Tabella di collaudo per tavole «TRKD»

Tolleranze espresse i	in µm Parallelismo dello scorrimento controllato lateralmente sull'intera corsa	Parallelismo dello scorrimento controllato verticalmente sull'intera corsa	Parallelismo della struttura superiore controllato sulla mezzeria
Denominazione			
TRKD3 200 300 400 500	10 10 16 24	4 5 7 7	15 20 20 20 20
TRKD6 200 300 400 500 600 700 800 900 1000	10 10 18 24 10 15 18 24 26	4 5 8 8 8 9 9 9	15 20 20 20 25 25 25 25 25 25
TRKD9 300 400 500 600 700 800 900 1000	10 10 10 10 12 12 12 14	5 6 7 8 9 9 10 10	20 25 25 30 30 30 30 30 30

NOTE	

NOTE	

